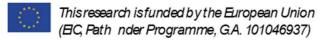
Novel Geothermal Drilling for Developing Deep Heat Exchangers: the DeepU Project

Luc Pockelé



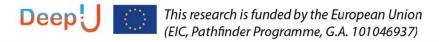
06-10 October 2025 | Zurich, Switzerland

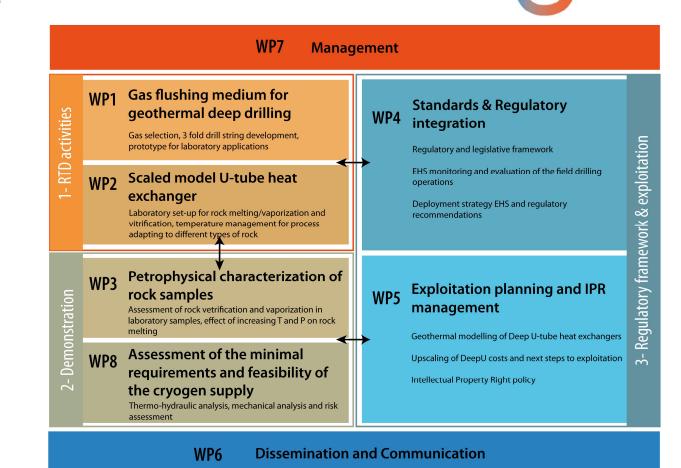
Project start date: March 1 2022

Project duration: 44 months

Coordinator

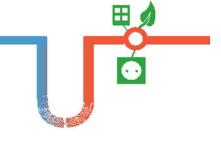
Luc Pockelé (RED Srl)

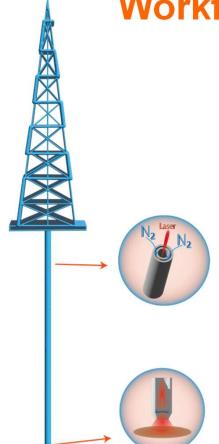




Goals of DeepU project

- Developing a new laser drilling technology
- Extracting energy from deep (>6 km) Ushaped or other closed-loops
- Reducing the costs of well drilling
- Making geothermal energy accessible anywhere

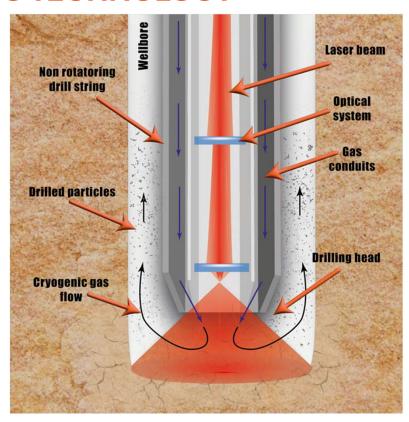




Workflow in DeepU Project

7 international teams work on different aspects of DeepU Project, such as:

- Laser driven drill bit
- Gas flushing system and drill string design
- Scaled model of U-tube heat exchanger
- Petrophysical characterization of drilling process
- Standards and regulatory integration
- Exploitation planning and IPR management
- Communication
- Management


INNOVATIVE DRILLING TECHNOLOGY

A **laser** propulsion drilling method is combined with **cryogenic gaseous flushing** for cooling the laser drill head, borehole walls and bring the cuttings to the surface

Improved ROP Reduced drilling time and cost

In case a glazed layer is formed on the borehole walls, the borehole is physically isolated from the surrounding formations without requiring further casing activities.

Reduced time and casing cost

Laser drilling laboratory tests

Robotic arm

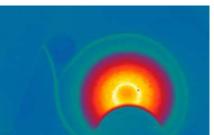
Optical system

Drilling string

Steel container

Rock slabs

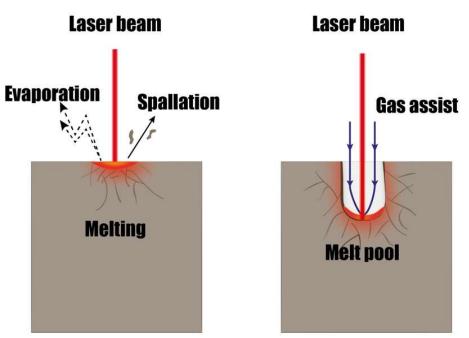
150mm x 300 mm x 500 mm

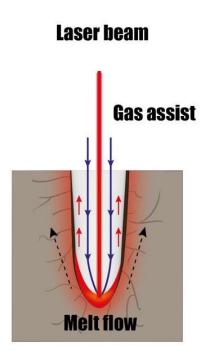


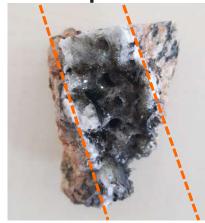
0

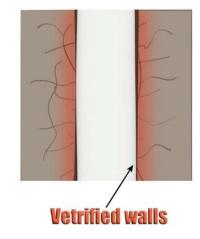
Experimental setup

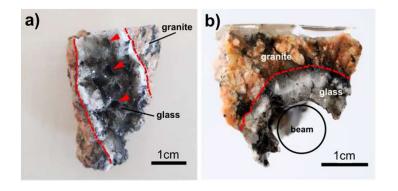
- Fixed position of robotic arm (working distance)
- Drill with and without assistance of room temperature N₂ flux
- Testing drilling heads
- Laser power: 6-30 kW
- Beam diameter: 5-20 cm
- Selected lithologies: granite, sandstone, limestone
- Video documentation
- IR video documentation (thermocamera)
- Gas spectrometry

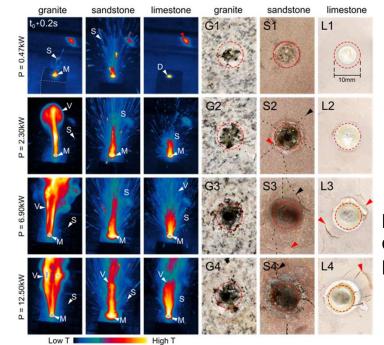





Laser-rock interactions

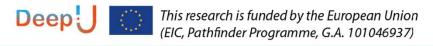






Results of the lab tests

- Description of petro-physico-mechanical phenomena; spallation, melting, evaporation
- Formation of glass layer (1-5 mm)
- Successful drills of selected lithologies
- ROP up to 25 m/h



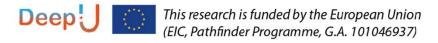
IR images and pictures of crater from drill head tests

Thermally spalled borehole

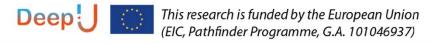
Drilling string and pneumatic transport of cuttings

Cryogenic gas flow experiments:

- Cryogen flow analysis modelling
- System construction options for cryogen transport
- Assessment of minimal mechanical requirements for the cryogenic system
- Verification, validation and analysis of one prototype drill string


Cryogenic supply for geothermal drilling p≅1 bar Ambient Air T≅77K Heat Exchanger (if needed) Compressor To drill string Local air separation unit pressurized up to 350 bar Cryogenic Control Liquid Nitrogen System Storage Tank

Pneumatic Transport Tests with Cryogenic Gas In Laboratory


Costs of drilling operations

Drilling cost estimator:

- Spreadsheet based tool to compare State-of-the-Art and DeepU technology drilling costs
- Cost reduction potential in the order of 10 15 % without taking vitrification into account and assuming local production or 60 % reduction of supply cost of liquid nitrogen

COMPLETION		Completion PH		Sub-total- days		SoA				Days	4		DeepU			.Vertical.	Days	4	
COMPLETION Phase Sub-total		Completion PH		Phase Sub- total		SoA					1,790,000,00 €		DeepU					1,790,000.00 €	
COMPLETION Single. Sub-total		Completion.		Single Sub:		SoA	number of branches	Vertical	2.00		895,000.001		SoA	number of branches	Vertical	2.00		895,000.001	
Wireline logging Suite	L	Completion PH	Completion	Service	Day rate	SoA	SoA Wireline logging Suite	75,000.001	3.00	Days	225,000.001	Based on SLB's Logging Costs - 3 site visits, 5 Sonde Runs	SoA	SoA Vireline logging Suite	75,000.001	3.00	Days	225,000.001	
Pump Testing	1	Completion PH	Completion	Service	From table	SoA	SoA Pump Testing	300,000.001	100	Set	300,000.001	(allow 10 days to rig time)	SoA	SoA Pump Testing	300,000.001	100	Set	300,000.001	
Stimulation	1	Completion PH	Completion	Service	From table	SoA	SoA Stimulation	300,000.001	100	Set	300,000.001	f-0 - 10 d	SoA	SoA Stimulation	300,000.001	100	Set	300,000.001	
Wellhead equipment	t	Completion PH	Completion	Material	From table	SoA	SoA Wellhead equipment	50,000.001	100		50,000.001	Two wells - 28K each in Finland - cheaper at UDDP	SoA	SoA Wellhead equipment	50,000.001	100		50,000.001	Verify if a customize velhead is necessa
Rig Skid from completed Well to new Well	1	Completion PH	Site preparation	Service	From table	SoA	SoA Rig Skid from completed Well to new Well	20,000.00 €	1.00	Days	20,000.001		SoA	SoA Rig Skid from completed Well to new Well	20,000.00 €	1.00	Days	20,000.00 (**********************
GRAND TOTAL Contingency						SoA			15.00	×	80,206,737,97 € 12,031,010.70 I		DeepU			15.00	%	70,997,684.02 € 10,649,652.60 I	
Total Drilling Operations with Contingency						DeepU					92,237,748.67 €		DeepU					81,647,336.63 €	
Specific drilling cost						SoA	SoA Specific drilling			lím	1,487.711		DeepU	DeepU Specific drilling cost			lím	1,316.89 (

Achievements

- Feasibility of laser drilling with cryogenic gas demonstrated in laboratory
- Understanding reached on interactions laser/rock in function of rock type and applied power
- Design of drill head completed and proven in laboratory
- Mechanical design of drill string completed and validated in laboratory
- Process simulation model (drill string, cryogenic gas flow, pneumatic transport) completed
- Pneumatic transport validated in laboratory

Laser drilled borehole

www.deepu.eu

This research is funded by the European Union (EIC, Pathfinder Programme, G.A. 101046937)

Deep U-tube heat exchanger breakthrough: combining laser and cryogenics gas for geothermal energy exploitation

Thank You for Your Attention

Contact: luc.pockele@red-srl.com

Università degli Studi di Padova

This research is funded by the European Union (G.A. 101046937). However, the views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or EISMEA. Neither the European Union nor the granting authority can be held responsible for them.