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EXECUTIVE (or PUBLISHABLE) SUMMARY

This deliverable, prepared by the WrocĹaw University of Science and Technology
(WUST) within the DeepU project, assesses the mechanical and material require-
ments for a cryogenic system integrated into a laser-based deep geothermal drilling
technology. The study defines and validates the mechanical design of a vacuum-
insulated, multi-pipe laser drill string capable of operating at 4000 m depth under
cryogenic conditions.

The DeepU concept replaces conventional drilling with high-power laser rock
ablation, supported by cryogenic nitrogen flow to remove molten and spalled ma-
terial. Experimental tests on the initial bronze filter design revealed inadequate
phase-separation performance, prompting a redesign toward a vacuum-insulated
cryogenic transfer line compliant with API and EU Pressure Equipment Directive
(PED 2014/68/EU) standards.

A computational tool was developed to calculate minimum mechanical strength,
stress limits, and wall thicknesses under realistic load and temperature conditions.
Austenitic stainless steels were selected as optimal materials for both the process
(1.4306 / AISI 304L) and casing (N08028 / 1.4563) pipes, o↵ering cryogenic re-
silience, corrosion resistance, and weldability.

The final design comprises 12-meter modular segments integrating cryogenic
pipes, a laser conduit, and electrical cabling. Key features include thermal ex-
pansion compensation, quick-connect double-thread mechanical joints, cryogenic
copper-gasket seals, and vacuum-powder insulation with a dedicated pumping port.

Prototype segments will undergo mechanical (up to 1 MN load), pressure (34
MPa at 77 K), and leak-tightness testing to confirm performance. Overall, the design
merges drilling-industry robustness with cryogenic precision, forming a validated
foundation for scalable, e�cient, and low-carbon deep geothermal energy extraction.
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