

Petrophysical effects induced by laser on hard/soft rocks

Lead Beneficiary: UNIPD

Authors: P. Slupski¹, A. Galgaro¹, R. Sassi¹,

Authors affiliations: 1UNIPD

Date: 30/04/2024

Dissemination Level

PU	Public, fully open	
SEN	N Sensitive - limited under the conditions of the Grant Agreement	
CI	EU classified - RESTREINT-UE/EU-RESTRICTED, CONFIDENTIEL-UE/EU-CONFIDENTIAL, SECRET-UE/EU-SECRET under Decision 2015/444	

This research is funded by the European Union (G.A. 101046937). The views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EISMEA. Neither the European Union nor the granting authority can be held responsible for them.

Document History

Version	Date	Authors	Description
1	29/04/2024	Pawel Slupski	First draft
2	30/04/2024	Antonio Galgaro	Review and comments
3	03/05/2024	Raffaele Sassi	Review and comments
4	10/05/2024	Riccardo Pasquali	Review and comments
5	12/05/2024	Arno Romanowski	Review and comments
6	13/05/2024	Pawel Slupski	Final draft to coordinator
7	31/05/2024	Luc Pockelé	Final review and submission

Disclaimer

This document is the property of the DeepU Consortium.

This document may not be copied, reproduced, or modified in the whole or in the part for any purpose without written permission from the DeepU Coordinator with acceptance of the Project Consortium.

This publication was completed with the support of the European Innovation Council and SMEs Executive Agency (EISMEA) under the HORIZON-EIC-2021-PATHFINDEROPEN-01 programme. This research is funded by the European Union (G.A. 101046937). However, the views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or EISMEA. Neither the European Union nor the granting authority can be held responsible for them.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	6
1. INTRODUCTION	6
1.1. LASER-ROCK INTERACTIONS	6
INTRODUCTION 1.1. LASER-ROCK INTERACTIONS METHODOLOGY 2.1 SAMPLE SELECTION AND ANALYTICAL METHODS Analytical methods 2.2 EXPERIMENTAL DESIGN RESULTES 3.1 CHARACTERIZATION OF SELECTED ROCK SAMPLES Granite characterization Sandstone characterization Limestone characterization 3.2 LASER DRILLING EXPERIMENTS Linear laser drilling tests Discrete laser drilling tests DeepU setup laser drilling tests 3.3 PETROPHYSICAL ANALYSIS OF IRRADIATED ROCKS Melting-evaporation laser drilling Thermal spallation laser drilling CONCLUSIONS	
2.1 SAMPLE SELECTION AND ANALYTICAL METHODS	7
·	
3.1 CHARACTERIZATION OF SELECTED ROCK SAMPLES	10
Granite characterization	
Sandstone characterization	
Limestone characterization	
3.2 LASER DRILLING EXPERIMENTS	14
Linear laser drilling tests	
Discrete laser drilling tests	
DeepU setup laser drilling tests	
3.3 PETROPHYSICAL ANALYSIS OF IRRADIATED ROCKS	22
Melting-evaporation laser drilling	
Thermal spallation laser drilling	
4. CONCLUSIONS	24
REFERENCES.	25

TABLE OF FIGURES

FIGURE 1: CLASSIFICATION OF DRILLING MECHANISMS, MODIFIED AFTER MAUER 1980
FIGURE 2: SCHEMATIC DRAWINGS REPRESENTING THREE EXPERIMENTAL SETUPS; LINEAR LASER DRILLING TESTS (A),
DISCRETE LASER DRILLING TESTS (B), AND DEEPU SETUP LASER DRILLING TESTS (C)
FIGURE 3: PHOTOGRAPH OF GRANITE SURFACE (A), PHOTOMICROGRAPH IN PPL AND XPL OF BIOTITE PHENOCRYST (B),
BSE IMAGE SHOWING TEXTURE OF GRANITE (C), PHOTOMICROGRAPH IN PPL AND XPL OF LARGEST PLAGIOCLASE
PHENOCRYSTS < 2MM (D). RED ARROWS INDICATE SAUSSURITIZATION OF CHEMICAL ZONES IN PLAGIOCLASE, WHITE
DASHED LINE INDICATE NATURAL FRACTURES OCCURRING IN GRANITE
FIGURE 4: PHOTOGRAPH OF SANDSTONE SURFACE DIVIDED IN YELLOW AND RED SUB-LITHOLOGIES (A).
PHOTOMICROGRAPH IN PPL AND XPL OF SANDSTONE TEXTURE (B), BSE IMAGE SHOWING MINERALS IN SANDSTONE
AND GRAIN CONTACT (C), PHOTOMICROGRAPH IN PPL AND XPL OF SANDSTONE, SHOWING GRAIN CONTACT AND
MINERAL COMPOSITION (D). RED ARROWS INDICATE GRAIN CONTACT
FIGURE 5: PHOTOGRAPH OF THE LIMESTONE SURFACE (A). PHOTOMICROGRAPH IN XPL OF LIMESTONE TEXTURE (B), SE
IMAGE SHOWING POROSITY, GRAIN CONTACT AND WELL-DEVELOPED CALCITE FACETS OF MICRITE (RED ARROW) (C),
PHOTOMICROGRAPH IN XPL OF LIMESTONE, SHOWING MATRIX AND FOSSILS (D). RED ARROWS INDICATE FOSSILS 12
FIGURE 6: BI-VARIATE PLOTS SHOWING THE LASER-ROCK INTERACTION DEPENDENCE ON POWER DENSITY FOR GRANITE
(A), SANDSTONE (C) AND LIMESTONE (E). DASHED LINES INDICATE WELL DEFINED THRESHOLDS BETWEEN THE
PROCESSES. SOLID LINES SHOW CURRENTLY AVAILABLE LASER POWER (30kW - RED) AND FINAL POWER OF DEEPU
DRILLING TECHNIQUE (120kW-BLACK). IR-IMAGES SHOWING PROCESS OCCURRING AT DIFFERENT TIME SNAPS
REPRESENTING DIFFERENT POWER DENSITY FOR GRANITE (B), SANDSTONE (C), AND LIMESTONE (D)
FIGURE 7: PICTURES SHOWING RESULTS OF THE LINEAR DRILLING TESTS. (A) – GRANITE, 1 - STRONGLY BONDED GLASS, 2 -
LOOSELY BONDED GLASS, 3 - PARTIALLY MOLTEN SPALLS, 4 - SPALLS, 5 - SHALLOW CRATER EXCAVATED BY
SPALLATION. (B) – SANDSTONE, 1 - STRONGLY BONDED GLASS, 2 - DEEP GROOVE EXCAVATED BY SPALLATION, 3 -
PARTIALLY SPALLED PARTICLES WITH VISIBLE MELTING ON THE SURFACE. (C) – LIMESTONE, 1 – DEEP GROOVE, WITH
GLAZE, 2 - FRACTURED SURFACE WITH EVIDENCE OF SPALLING, 3 - SCORCHED, DECOMPOSED SURFACE
FIGURE 8: PHOTOGRAPHS OF CRATERS DRILLED IN THE DISCRETE LASER TESTS (A), AND IR-IMAGES OF FIRST MICROSECONDS OF LASING ROCKS. G-GRANITE, S-SANDSTONE, L-LIMESTONE
FIGURE 9: BI-VARIATE PLOTS SHOWING ROCK MASS REMOVED DURING THE LASING (Δ MASS) (A), AND SPECIFIC ENERGY (B)
WITH INCREASING POWER FOR GRANITE, SANDSTONE AND LIMESTONE
FIGURE 10: IR IMAGES OF THE LASER DRILLING PROCESS AT GIVEN TIME AND IR RECORD OF TEMPERATURE OVER TIME FOR
GRANITE (A), SANDSTONE (B), LIMESTONE (C), AND WATER SATURATED LIMESTONE (D)
FIGURE 11: PHOTOGRAPHS OF THE LASER-DRILLED SLABS WITH DEEPU SETUP. SL – WATER SATURATED LIMESTONE 21
FIGURE 12: PHOTOGRAPH OF LASER-DRILLED GRANITE IN THE MELTING-VAPORIZATION FIELD . (A) RED ARROWS INDICATE
BUBBLES (BOILING FEATURES), (B) - VISIBLE VITRIFIED WALLS, (C) – BSE IMAGE OF THE VITRIFIED WALLS SHOWING
FRACTURES (RED ARROWS) AND THREE DEFINED ZONES: GLASS, GLASS + MINERALS, ROCK. (D) – CLOSE UP AT THE
TRANSITION ZONE WITH VISIBLE GLASS AND PARTIALLY MOLTEN MINERALS. RED DASHED LINE INDICATES BORDER OF
VITRIFIED WALLS; WHITE DASH LINE THE DIVIDE BETWEEN GLASS AND THE TRANSITION ZONE
FIGURE 13: BSE IMAGES OF THERMALLY SPALLED GRANITE (A), SANDSTONE (B) AND LIMESTONE (C). RED LINES INDICATE
FRACTURES

LIST OF TABLES

TABLE 1: MINERAL AND CHEMICAL COMPOSITION OF SELECTED LITHOLOGIES. CHEMICAL	
COMPOSITION WAS NORMALIZED ON ANHYDROUS BASIS	13
TABLE 2: PHYSICAL AND THERMAL PROPERTIES OF THE SELECTED LITHOLOGIES	13
TABLE 3: THE PARAMETERS AND RESULTS OF DISCRETE LASER DRILLING EXPERIMENTS	18
TABLE 4: SLIMMARY OF THE LASER DRILLING EXPERIMENTS PERFORMED WITH DEEPLI SETTIP	21

ABBREVIATIONS AND GLOSSARY OF ACRONYMS

A = 112 121 1122	Future dead definitions
Acronym	Extended definition
BSE	Backscattered electron
DG	Department of Geosciences
DLT	Discrete Laser Tests
EDS	Energy Dispersive Spectroscopy
FEG	Field emission gun
IR	Infrared
LLT	Linear Laser Tests
OM	Optical microscopy
PPL	Plane polarized light
ROP	Rate of Penetration
SE	Secondary electron
SEM	Scanning Electron Microscopy
SR	Red sandstone
SY	Yellow sandstone
TCS	Thermal Conductivity Scanner
UNIPD	University of Padua
WD	Working distance
XPL	Crossed polarized light
XRD	X-Ray Diffraction
XRF	X-Ray Fluorescence
Symbol	Definition
Р	power (kW)
ρ	density (g/cm ³)
P _ρ	power density (W/cm³)
E	Young's Modulus (GPa)
Ab	water absorbance (%)
Vp	P-wave velocity (km/s)
Vs	S-wave velocity (km/s)
V	Poisson's ratio (-)
G	shear modulus (GPa)
λ	thermal conductivity (W/m·K)
Ср	volumetric thermal capacity (J/m ³ ·K)
α	thermal diffusivity (m²/s)
SE	specific energy (kJ/cm³)
ti	time of irradiation (s)
T	temperature (°C)
	average temperature of spallation (°C)
Ts	

EXECUTIVE SUMMARY

This report focuses on the project activities related to the laser-rock interactions studied in the three experimental laser drilling tests, performed during two campaigns in the dedicated test facility of Fraunhofer-IAPT in Hamburg, Germany. Three types of lithologies were selected for initial laboratory tests: granite, sandstone, and limestone. The petro-thermo-mechanical phenomena occurring during laser irradiation, such as spallation, melting, and evaporation, were recognized and described in detail. The laser drilling process was assessed by IR imaging, and analysis of irradiated rocks. This comprehensive approach provided information about the most effective process for rock removal as being spallation, occurring at low temperature (<700°C) and capable of drilling boreholes up to 18cm in diameter. Melting-evaporation drilling was also achieved (>2000°C). The presence of vitrified walls was confirmed, however for a much smaller borehole diameter < 2cm. The laser working parameters and experimental setup were optimized based on the observed phenomena. After the experiments, sections of boreholes were cut out and examined. The microscopic observations on the unaffected and affected rock thin sections have been performed with use of polarized optical and scanning electron microscopy revealing micro-fracturing of the rock. The depth and density of damages was characterized and quantified.

REFERENCES

- Brian C. Gahan, Richard A. Parker, Ramona Graves, Samih Batarseh, Claude B. Reed, Zhiyue Xu, Humberto Figueroa, and Neal Skinner, 2001, Laser Drilling: Drilling with the Power of Light Phase 1: Feasibility Study: 924031, 924031 p., doi:10.2172/924031.
- Han, Y., Zheng, C., Liu, Y., Xu, Y., Liu, P., Zhu, Y., and Wu, X., 2024, Study on the rock-breaking characteristics of high-energy pulsed plasma jet for granite: Geoenergy Science and Engineering, v. 232, p. 212466, doi:10.1016/j.geoen.2023.212466.
- Healy, D., Rizzo, R.E., Cornwell, D.G., Farrell, N.J.C., Watkins, H., Timms, N.E., Gomez-Rivas, E., and Smith, M., 2017, FracPaQ: A MATLAB[™] toolbox for the quantification of fracture patterns: Journal of Structural Geology, v. 95, p. 1–16, doi:10.1016/j.jsg.2016.12.003.
- Kant, M.A., Rossi, E., Madonna, C., Höser, D., and Rudolf von Rohr, P., 2017, A theory on thermal spalling of rocks with a focus on thermal spallation drilling: Journal of Geophysical Research: Solid Earth, v. 122, p. 1805–1815, doi:10.1002/2016JB013800.
- Li, M., Han, B., Zhang, Q., Zhang, S., and He, Q., 2019, Investigation on rock breaking for sandstone with high power density laser beam: Optik, v. 180, p. 635–647, doi:10.1016/j.ijleo.2018.10.059.
- Rossi, E., Jamali, S., Saar, M.O., and Rudolf von Rohr, P., 2020, Field test of a Combined Thermo-Mechanical Drilling technology. Mode I: Thermal spallation drilling: Journal of Petroleum Science and Engineering, v. 190, p. 107005, doi:10.1016/j.petrol.2020.107005.
- Seo, Y., Lee, D., and Pyo, S., 2022, The interaction of high-power fiber laser irradiation with intrusive rocks: Scientific Reports, v. 12, p. 680, doi:10.1038/s41598-021-04575-z.
- Yang, X., Zhou, J., Zhou, X., Nie, A., and Jian, Q., 2020, Investigation on the rock temperature in fiber laser perforating: Optik, v. 219, p. 165104, doi:10.1016/j.ijleo.2020.165104.
- Zhu, X., Luo, Y., and Liu, W., 2020, On the rock-breaking mechanism of plasma channel drilling technology: Journal of Petroleum Science and Engineering, v. 194, p. 107356, doi:10.1016/j.petrol.2020.107356.