

Temperature management for process adapting to different types of rock

Lead Beneficiary: FhG IAPT

Authors: P. Planitzer¹, G. Cerwenka¹, O. Steinmeier¹, A. Fischer¹

Authors affiliations: 1Fraunhofer IAPT

Date: 29/05/2024

Dissemination Level

PU	Public, fully open	
SEN	Sensitive - limited under the conditions of the Grant Agreement	
CI	EU classified - RESTREINT-UE/EU-RESTRICTED, CONFIDENTIEL-UE/EU-CONFIDENTIAL, SECRET-UE/EU-SECRET under Decision 2015/444	

This research is funded by the European Union (G.A. 101046937). The views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EISMEA. Neither the European Union nor the granting authority can be held responsible for them.

Temperature management for process adapting to different types of rock

Document History

Version	Date	Authors	Description
1	29/05/2024	P. Planitzer, G. Cerwenka, O. Steinmeier	First draft
2	01/06/2024	PREVENT	Review and comments
3	11/06/2024	UNIPD	Review and comments
4	12/06/2024	GEOSERV	Review and comments
5	12/06/2024	P. Planitzer, G. Cerwenka, O. Steinmeier	Final document
6	22/07/2024	O. Steinmeier	Document sent to coordinator
7	23/07/2024	L. Pockelé	Final review and submission

Disclaimer

This document is the property of the DeepU Consortium.

This document may not be copied, reproduced, or modified in the whole or in the part for any purpose without written permission from the DeepU Coordinator with acceptance of the Project Consortium.

This publication was completed with the support of the European Innovation Council and SMEs Executive Agency (EISMEA) under the HORIZON-EIC-2021-PATHFINDEROPEN-01 programme. This research is funded by the European Union (G.A. 101046937). However, the views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or EISMEA. Neither the European Union nor the granting authority can be held responsible for them.

Temperature management for process adapting to different types of rock

TABLE OF CONTENTS

PUBLISHABLE SUMMARY		
1. INTRODUCTION	<u>5</u> 5	
2. CLOSED-LOOP ALGORITHM DEVELOPMENT	<u>5</u> 5	
2.1 CAUSE-EFFECT DIAGRAM ON EXCAVATED ROCK MATERIAL	5 5	
2.2 REQUIREMENT SPECIFICATION FOR SENSOR SYSTEMS	_ <u>6</u> 6	
2.3 SENSOR SELECTION	<u>9</u> 9	
2.4 FLOW CHART OF THE CLOSED-LOOP ALGORITHMS		
2.5 CODE PROGRAMMING AND IMPLEMENTATION	<u>11</u> 11	
REFERENCES	<u>14</u> 14	

Temperature management for process adapting to different types of rock

TABLE OF FIGURES

FIGURE 1: CAUSE-EFFECT DIAGRAM ON EXCAVATED ROCK MATERIAL	<u>5</u> 5
FIGURE 2: FLOW CHART OF THE CLOSED-LOOP ALGORITHMS FOR LASER DRILLING CONTROL	<u>10</u> 10
LIST OF TABLES	
Table 1: Conditions.	<u>6</u> 6
TABLE 2: REQUIREMENT SPECIFICATION.	<u>7</u> 7

ABBREVIATIONS AND GLOSSARY OF ACRONYMS

Acronym	Extended definition
F	Fixed Requirement
I ² C	Inter-Integrated Circuit
IP	International Protection Codes
IR	Infrared
LIDAR	Laser-Induced Detection and Ranging
M	Minimum Requirement
NTC	Negative Temperature Coefficient
OCT	Optical Coherence Tomography
Р	Priority Level
PTC	Positive Temperature Coefficient
SPI	Serial Peripheral Interface
TRL	Technology Readiness Level
UV	Ultra Violet
VIS	Visible
W	Wishes

Temperature management for process adapting to different types of rock

PUBLISHABLE SUMMARY

In order to drill different types of rock and layer compositions with different melting points, it is necessary to adapt the laser drilling process. For this purpose, a sensor-based closed-loop temperature management was developed, whose algorithms are to be implemented in the control unit of the laser drilling system. The automated algorithms use both real-time sensor data near the borehole bottom and elaborated knowledge about the laser-gas-rock interaction from laboratory experiments and analysis. The information acquired by the sensors is the type of rock and/or the melting phase of the rock, the environmental conditions at the borehole bottom, and the condition of the laser drill string to set the corresponding process temperature or parameters.