

DeepU 39th M - Final Conference $06^{th} - October \ 2025$ Exploitation planning and IPR

DEEPU DRILLING SCALABILITY AND POSSIBLE FUTURE ON-SITE APPLICATION

OBJECTIVES of the techno-economic analysis (T.E.A.):

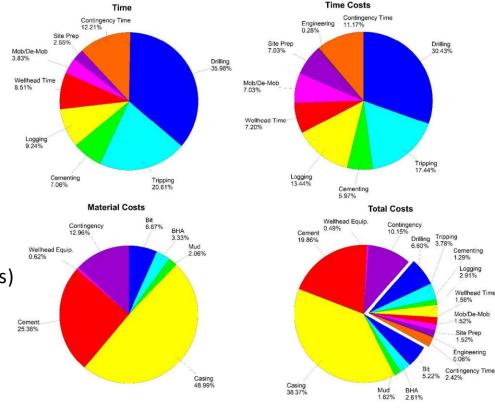
- ✓ Compare DeepU drilling technology with conventional (SoA State of Art) drilling technology:
 - Costs
 - Efficiency
- ✓ <u>Assess the advantages</u> offered by DeepU technology
- ✓ <u>Identify next steps</u> for technology advancement

INPUT DATA FOR T.E.A.: FROM SIMULATED OPEN & CLOSED-LOOP SYSTEMS IN 3 DIFFERENT SITES

Simulating different geothermal systems: <u>identify</u> the main <u>parameters</u> of different well configurations <u>for drilling cost calculation</u>

			Max		Vertic	cal wells		Horizon	Tot.			Gross El.	Net El.			
Site	Well Conf.	Simul. by	Depth [m]	N. of w.	Length		Ø of w. [mm]	N. of w.	Single Length [m]	Tot. Length [m]	Ø of w. [mm]	Flow rate [kg/s]	T _{Out} [°C]	T _{In} [°C]	Power [MW]	Power [MW]
Ferrara	3 doublet Open loop	CNR-IGG	2.000 vert.+ 4.500 dev. = <u>6.500</u>	3 inj.+ 3 prod.= <u>6</u>	6.500	3x6.5k+ 3x6.5k= <u>39k</u>	-> 0-2k m x330(13") -> 2-6.5k m x178(7")	/	L	/	/	500	135	65	25	22
Ferrara	Radiator Closed Ioop	CNR-IGG	6.000	1 inj.+ 1 prod.= <u>2</u>	6.000	1x6k+ 1x6k= <u>12k</u>	330 (13")	5+5 = <u>10</u>	5.000	5 x 5k+ 5 x 5k= <u>50k</u>	178 (7")	150	135	65	5.2	4.0
Ferrara	Single U Closed loop	UNIPD	4.000	1 inj.+ 1prod.= <u>2</u>	4.000	1x4k+ 1x4k= <u>8k</u>	188 (7"-3/8)	1	5.000	<u>5k</u>	100 (4")	5	95	65	n/a	n/a
Ferrara	Coaxial Closed loop	UNIPD	4.000	1 inj. (+1prod. coax. pipe)	4.000	1x4k = <u>4k</u>	-> Outer 285 (11"-3/8) -> Inner 100 (4")	/	/	/	/	9	120	70	n/a	n/a

DRILLING COSTS ANALYSIS


DRILLING COST IMPACT

✓ D.C. can account for over 50% of a geothermal energy project's total

investment

DRILLING COST FACTORS

- ✓ D.C. <u>influenced by many</u> parameters:
 - Well design
 - General organization of activities
 - Site and logistics
 - Services
 - Materials (consumables and resources)
 - Daily operating activities
 - Troubles during drilling
 - Waste disposal
 - Completion activities

[GeoVision analysis supporting task force report reservoir maintenance and development – Lowry et al., 2017]

DRILLING COST ESTIMATOR

Spreadsheet based tool to compare DeepU drilling technology with SoA drilling:

- ✓ providing a <u>detailed breakdown of drilling costs</u> and their primary influencing factors
- evaluating penetration <u>efficiency</u>, <u>material consumption</u>, <u>equipment costs</u>, environmental sustainability

Drilling Cost Estimator: define and characterize relevant D.C. factors to identify & quantify potential cost savings

								. 54	ste of the A	ing Cost E	stimate	Deeptl - Driffing Cost Estimate								
TEM .	MCTION -	PMASE	CATEGORS.*	COST TYPE	COST	CATEGORY T	Dricking technolic	Description	MATE PEI	Ony .	GNY SMT	TOTAL	Contributes	Declarate *	Description		Gry		TOTAL	Comments
PRE-SPUD		Par			-	0.0000000000000000000000000000000000000	Soul							Despti						
PHE NISH PRANK SHID	282	Pre-spud Pr		EDMAKAND.			Soh					1,571,000,00 €		Dona'd					1,571,000,00 €	
DRILLING		Community of the		Total-days			-				Days	180		Demail of				Diss	122	-
DESCRIPTION CHARGE Sub-		Diffing PH		Enanc.Soft			Ana					76.845,737.87 €		Desgri					57,636,684,02 €	
SERVICES COSTS	(not-time dependent	Dritting PH		-111000																
SURVICES COSTS. Overall Sub total	SEX	Drilling Fts		Overall Sub-								415.580.04.E				1			415,580,04 E	
DAILY OPERATING COSTS	(time dependent)	Dritting Ptt						DLY_OP_CST												
Ongoing defectors. Short Self-total	DNG	Dollary PM	-	Flores State:	Dagnate			Congrains dads	-			71.687.003			Degemantals.				S1.02.001	
Directional Diffing daily posts Direct Sub-total	008	Disting 231		Hess Sub-	Day case			Directional Dollara daily.costs				15,000,001							75,000,001	
DRILLING		Drilling Ptt		1000000				DRI OP CST								100000000000000000000000000000000000000				li la companya da la
Overal Sub-Julai		Ording PH		Deputation local				12000,m	Xertical	2.00		28.208.378.22 €	2,359,79 €			XxXXxX	2.00		18,999,324,27.6	1,583,28
OVERALING OPERATIONS Overall Septicial		Doming Pro		Quarant Sub-				9.00	Doctore	1.00		4	5			Distant	0.00			
Overall Sept total		Oction Ptr		Overset Sub-				20000.m	Honacada	2.00		49.221.779.71 €	264.64.5			motionis	nw		48,221,779,716	364.65

POWER PLANT COST CALCULATION

SURFACE PLANT COST:

- ✓ Assuming power plant costs based on literature
- Cost calculation for the simulated plants
- ✓ Same plant cost for DeepU & SoA technology

Site	Well Configuration
Ferrara	3 doublet - Open loop
Ferrara	Radiator - Closed loop
Larderello	3 doublet - Open loop
Larderello	Radiator - Closed loop
Leinster	1 doublet - Open loop
Leinster	Radiator - Closed loop

DRILLING COSTS + POWER PLANT FOR SOA & DEEPU TECHNOLOGIES

Calculating drilling costs & power plant cost:

<u>calculate levelized cost of energy</u> (Electric Power & Heat for Direct Use) <u>for the</u> <u>2 technologies</u>

	Well	V	ertical w	rells	Horizontal wells			Tot.		T _{Out}	_	SoA	DeepU	O&M,E Costs		SoA	DeepU
Site	Conf.	N. of w.	Tot. Length [m]	Ø of w. [mm]	N. of w.	Tot. Length [m]	Ø of w. [mm]	rate [kg/s]	T _{Out}	ORC [°C]	T _{In} [°C]	Drill,El.+ El.Pl.cost [M€]	Drill,El.+ El.Pl.cost [M€]	(1.5% Pl.costs) [M€]	Energy per year [MWh]	LCOE [€/MWh]	LCOE [€/MWh]
Ferrara	3 doublet Open loop	3 inj. + 3 prod. = <u>6</u>	3x6.5k + 3x6.5k = <u>39k</u>	-> 0-2k m x330(13") -> 2-6.5k m x178(7")	/	/	/	500	135	80	65	162	150	1.125	183084	54.68	51.15
Ferrara	Radiator Closed Ioop	1 inj. + 1 prod. = 2	1x6k + 1x6k = <u>12k</u>	330 (13")	5+5 = <u>10</u>	5 x 5k + 5 x 5k = 50k	178 (7")	150	135	80	65	88	80	0.234	33288	151.65	138.72
Larderello	3 doublet Open loop	3 inj. + 3 prod. = <u>6</u>	6x3k = <u>18k</u>	-> 0-500 m x 330(13") -> 500-2k m x 178(7") -> 2k-3k m no CSNG	/	/	/	27	320	80	65	95	82	0.450	64079	88.18	76.92
Larderello	Radiator Closed Ioop	1 inj. + 1 prod. = 2	2x3k = <u>6k</u>	330 (13")	5+5 = 10	5 x 5k + 5 x 5k = 50k	178 (7")	36	250	80	65	96	93	0.279	46603	118.58	115.34

CONCLUSIONS AND FUTURE DEVELOPMENTS

The <u>DeepU</u> technology <u>introduces a novel approach</u>:

✓ Competitive advantages:

- Lower daily costs (~10% less vs. SoA)
- Faster drilling (≈30% less time, no trip in/out)
- Lower power demand for rig and fluid systems
- Simpler, lighter rig no-torque, cranebased system
- Reduced wear longer drill string lifespan
- Cleaner process less waste, potential reuse of solids
- Lower casing needs partial vitrification of borehole

✓ Challenges ahead:

- Cryogenic fluid optimization for efficiency and cost
- Field validation in diverse geological settings
- Instrumentation & controls to drive the drilling process & maintain safety
- Scalability for large-scale geothermal projects
- Investment & partnerships needed for pilot deployment

IPR STRATEGY: BUILDING A PROTECTED INNOVATION

<u>DeepU is</u> not just a prototype — it's <u>a protected</u> technology platform:

- ✓ German process patent: held by Prevent GmbH
- ✓ PCT patent application: approved
- ✓ International patent application: USA approved
- ✓ Proprietary know-how developed in DeepU: under evaluation within the consortium

PATHWAY TO EXPLOITATION

From concept to pilot – <u>ready for industrial scale-up</u>:

- ✓ **Short-term (TRL 4-6):** Field validation up to 400 m (EIC Transition funding, prepare scale up, interest investors)
- ✓ **Mid-term (TRL 6-8):** 4000 m prototype (EIC accelerator + Joined venture + innovation fund/private investors 20m 40m drilling tower prototype)
- ✓ Long-term (Market Entry): Licensing, service contracts, or Joint Venture with rig operators

PARTNERSHIP & INVESTMENT OPPORTUNITIES FOR DEEPU TECHNOLOGY

- ✓ **Licensing options:** Laser drilling modules, control software, EHS protocols
- ✓ **Joint Ventures:** With rig manufacturers, utilities, or EPC contractors
- ✓ Technology service contracts: Site design, operation matrix, vitrification expertise
- ✓ Target markets: Deep geothermal, underground storage, mining, Carbon Capture and Storage

Many thanks for your attention

44 month Final Conference meeting 06 October 2025 WP5 Exploitation planning and IPR management