Deep*

DeepU drilling scalability and possible future on-site application

Lead Beneficiary: RED Authors: N. Mutinelli¹, M. Chinello¹, L. Pockelé¹, K. Mallin², R. Pasquali² Authors affiliations: ¹RED, ²GEOSERV Date: 17/02/2025

Dissemination Level

PU	Public, fully open	
SEN	Sensitive - limited under the conditions of the Grant Agreement	х
СІ	EU classified - RESTREINT-UE/EU-RESTRICTED, CONFIDENTIEL-UE/EU- CONFIDENTIAL, SECRET-UE/EU-SECRET under Decision 2015/444	

This research is funded by the European Union (G.A. 101046937). The views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EISMEA. Neither the European Union nor the granting authority can be held responsible for them.

DELIVERABLE D5.2 DeepU drilling scalability and possible future on-site application

Document History

Version	Date	Authors	Description
1	17/02/2025	N. Mutinelli, M. Chinello	First draft
2	22/02/025	R. Pasquali	Review 1
3	22/02/2025	K. Mallin	Review 2
4	25/02/2025	N. Mutinelli	Review 3
5	28/02/2025	L. Pockelé	Final Review

Disclaimer

This document is the property of the DeepU Consortium.

This document may not be copied, reproduced, or modified in the whole or in the part for any purpose without written permission from the DeepU Coordinator with acceptance of the Project Consortium.

This publication was completed with the support of the European Innovation Council and SMEs Executive Agency (EISMEA) under the HORIZON-EIC-2021-PATHFINDEROPEN-01 programme. This research is funded by the European Union (G.A. 101046937). However, the views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or EISMEA. Neither the European Union nor the granting authority can be held responsible for them.

Deep U Funded by the European Union (G.A. 101046937)

DELIVERABLE D5.2

DeepU drilling scalability and possible future on-site application

TABLE OF CONTENTS

P	UBLISHAP	SLE SUMMARY	9
1.	INTRO	DUCTION	10
2.	DRILLI	NG COSTS	10
	2.1. Dr	ILLING COST FACTORS	10
	2.2. Dr	ILLING COST CORRELATIONS FOR THE STATE-OF-THE-ART	11
	2.2.1.	Data actualisation	11
	2.2.2.	Cost correlations in literature	11
	2.2.2.1	. Cost analysis of oil, gas, and geothermal well drilling – (Lukawski et al., 2014)	11
	2.2.2.2	. GeoVision analysis supporting task force report reservoir maintenance and development – (Lowry et al.,
	2017)	13	
	2.2.2.3	Comparison of cost correlations	16
	2.3. Dr	ILLING COST FACTORS ANALYSIS WITH COMPARISON BETWEEN ${ m SoA}$ and ${ m DeepU}$	17
	2.4. Dr	ILLING COST IMPACT	18
	2.4.1.	Drilling diary	20
	2.4.2.	Site and its characteristics for cost evaluation	21
	2.4.2.1	. General rock classification	21
	2.4.2.2	. Rock characteristics and drilling process considerations	22
	2.5. CH	ARACTERISATION OF DRILLING COST FACTORS	23
	2.5.1.	Pre-spud phase	24
	2.5.1.1	. Well design	25
	2.5.1.2	. External well design examination	25
	2.5.1.3	. Drilling program	25
	2.5.1.4	Site preparation	26
	2.5.2.	Drilling phase - general considerations	27
	2.5.3.	Drilling phase - SERVICES COSTS (non-time dependent)	27
	2.5.4.	Drilling phase - DAILY OPERATING COSTS (time dependent)	27
	2.5.4.1	. Rig rate	29
	Dee	PU Derrick	29
	Dee	pU Drill string connector	30
	Dee	pU Laser system	30
	2542	Drill string rate	31
	2.5.4.3	Drill head rate	32
	2.5.4.4	. Directional drilling	33
	2.5.4.5	. Drilling fluids-general analysis, Drilling fluid engineer, Drilling fluid system, Drilling fluid 33	logging system
	Dee	pU cryogenic fluid supply system	36
	Dee	pU Solid control system	38
	Dee	pU complete cryogenic drilling fluid system rental rate	40
	2.5.4.6	. Rental tools, fishing	40
	2.5.5.	Drilling phase – DRILLING OPERATIONS	40
	2.5.5.1	. Diesel	41
	2.5.5.2	. Electric power	41

DeepU drilling scalability and possible future on-site application

	2.5.5.3.	Drill bits & BHA	41
	Rota	ry assembly	42
	Drill	bit	42
	Rate	Of Penetration (ROP)	43
	Bit L	ife	45
	2.5.5.4.	Effective drilling time	45
	2.5.5.5.	Trip In/Trip Out time	46
	2.5.5.6.	Drilling fluids-as "Material" cost type	46
	2.5.5.7.	Drill string inspection	47
	2.5.5.8.	Casing, Casing accessories, Casing & Cementing	47
	2.5.5.9.	Problems	51
	Lost	circulation	51
	Stuc	c pipe	52
	Well	bore instability	52
	Diffi	cult cement jobs	52
	Well	bore diameter reduction	54
	Tem	porary zone closure	54
	2.5.5.10	. Liquid & Solid wastes	54
4	2.5.6.	Completion phase	55
	2.5.6.1.	Wireline logging	55
	2.5.6.2.	Pumping test & Stimulation	56
	Pum	ping Test	56
	Stim	ulation	56
	2.5.6.3.	Wellheads	56
	Rig s	kidding (from completed well to new well)	57
2.6.	. Drii	LING OPERATIONS COSTS ESTIMATOR SPREAD SHEET	58
-	2.6.1.	Header section	58
	2.6.2.	Drilling Operations Costs Estimator section	59
	2.6.2.1.	Service Costs (not-time dependant)	60
	2.6.2.2.	Daily operating costs (time dependant)	60
	2.6.2.3.	Drilling operations – Well "X"	61
	2.6.2.4.	Completion	62
	2.6.2.5.	Total well cost calculation	62
, 2	2.6.3.	Present limitations and competitive advantages of DeepU	63
3. I	EXPLOI	ΓΑΙΟΝ	64
31	Pow	FR PLANT SIZES AND TYPE OF SERVICES	64
3.2	DEM		65
22			65
0.0. D 4	. Dou		0)
3.4.		YEK PLANI COSIS	68
j L	5.4.1.	Literature review	68
3.5.	. Pow	YER PLANT AND DRILLING COSTS FOR COMPARISON BETWEEN SOA AND DEEPU	70
3.6.	. Levi	ELIZED COST OF ENERGY	73
2	3.6.1.	Levelized cost of energy in GEOPHIRES	73
ć	3.6.2.	Levelized cost of energy for the simulated scenarios	76
4. (CONCLU	JSIONS AND FUTURE DEVELOPMENTS	78

4

DeepU drilling scalability and possible future on-site application

TABLE OF FIGURES

FIGURE 1: PPI FOR DRILLING OIL AND GAS WELLS: PRIMARY SERVICES	. 11
FIGURE 2: GEOTHERMAL WELL COSTS (IN BLACK) COMPARED TO AVERAGE 2009 OIL AND GAS WELL COSTS (IN RED) –	
LUKAWSKI ET AL., 2014	. 13
eq:Figure 3: Drilling cost depending on depth for different well configurations-Lowry et al., 2017	. 14
FIGURE 4: DRILLING COST DEPENDING ON DEPTH, GRAPHICAL COMPARISON OF COST CORRELATIONS	. 17
FIGURE 5: DRILLING COST/METER DEPENDING ON DEPTH, GRAPHICAL COMPARISON OF COST CORRELATIONS	. 17
FIGURE 6: COST AND TIME STRUCTURE BREAKDOWN FOR THE BASELINE LARGE DIAMETER VERTICAL WELL AT A TARGET	
depth of 5000 m. The break-out in the 'Total Costs' plot in the lower right are the time dependent	
COSTS DETAILED IN THE UPPER TWO PLOTS - LOWRY ET AL., 2017	. 19
FIGURE 7: COST AND TIME STRUCTURE BREAKDOWN VALUES FOR THE BASELINE LARGE DIAMETER VERTICAL WELL AT A	
TARGET DEPTH OF 5000 M - LOWRY ET AL., 2017	. 20
FIGURE 8: EXTRACT OF A "DRILLING DIARY"	. 21
FIGURE 9: DEEPU DRILL RIG PRELIMINARY STUDY	. 30
Figure 10: General view of the drilling string segment, dimensions in MM [D8.3]	. 31
FIGURE 11: AIR SEPARATOR AND SILENCER SYSTEM USED DURING DRILLING WITH GAS-BASED DRILLING FLUIDS	. 35
FIGURE 12: SCHEME OF THE LN SUPPLY SYSTEM	. 37
FIGURE 13: LN FLOW RATE FOR 2 DIFFERENT BOREHOLE DIAMETERS	. 37
FIGURE 14: TERMINAL VELOCITY FROM THE ANULUS	. 39
FIGURE 15: 4 AND 5 INTERVAL 5,000 M CASING	. 50
FIGURE 16: WELLHEAD GAS STORAGE	. 57
FIGURE 17: HEADER OF THE DRILLING OPERATION COST ESTIMATOR	. 59
FIGURE 18: SERVICE COSTS	. 60
FIGURE 19: DETAILS OF DAILY OPERATING COSTS, COMPARING THE SOA AND DEEPU TECHNOLOGIES	. 60
FIGURE 20: SUMMARY OF THE COSTS RESULTING FROM ALL THE PERFORATED SECTIONS	. 61
FIGURE 21: DETAILED COSTS FOR EACH SECTION DRILLED	. 62
FIGURE 22: COMPLETION COST SECTION AND THE FINAL TOTAL WELL COST CALCULATION	. 62
FIGURE 23: FERRARA – SIMULATIONS BY CNR-IGG: OPEN LOOP (3 VERTICAL-DEVIATED DOUBLETS: VERT.L \emptyset 13",	
0/2.000m, dev. – Ø 7", 2.000/6.500m); Closed Loop (Radiator: 2 vert. wells – Ø330mm, 0/6.000m, each	
CONNECTED TO 5 HORIZ. WELLS – \emptyset 178mm, length: 5.000m)	. 66
FIGURE 24: FERRARA – SIMULATIONS BY UNIPD: CLOSED LOOP (SINGLE U: $1+1$ vertical wells – \emptyset 4", $0/4.000$ m,	
CONNECTED TO 1 HORIZONTAL WELLS – 4", 5.000m); CLOSED LOOP (COAXIAL: 1 VERTICAL WELLS – $D3 = 285$ mm,	D1
= 80MM, DEPTH $= 4.000$ M)	. 66
FIGURE 25: LARDERELLO – SIMULATIONS BY CNR-IGG: OPEN LOOP (DOUBLETS: $3+3$ vertical wells – $\emptyset 13$ ", $0/500$ M;	Ø
7", 500/2.000m; No casing, 2.000/3.000m); Closed loop (Radiator: 2 vertical wells – Ø330mm, 0/6.000m	[,
EACH CONNECTED TO 5 HORIZONTAL WELLS – $\emptyset178$ mm, length: 5.000m)	. 66
FIGURE 26: LEINSTER AREA (IRE) - SIMULATION BY CNR-IGG: OPEN LOOP (1 VERTICAL DOUBLETS: VERTICAL Ø13",	
0/2.000m, deviated – Ø 7", 2.000/5.000m); Closed Loop (Radiator: 2 vertical wells – Ø330mm, 0/5.000m)	,
EACH CONNECTED TO 5 HORIZONTAL WELLS – \emptyset 178mm, length: 5.000m)	. 67
FIGURE 27: POWER PLANT COSTS FROM (BECKERS & MCCABE, 2019)	. 69
FIGURE 28: ORC SPECIFIC INVESTMENT COSTS AS FUNCTION OF PLANT SIZE FROM (BIANCHI ET AL., 2019)	. 69

DeepU drilling scalability and possible future on-site application

FIGURE 29: ELECTRICITY PRODUCTION AND LCOE OF U-TUBE-WATER CONFIGURATION	.74
FIGURE 30: ELECTRICITY PRODUCTION AND LCOE OF U-TUBE-CO2 CONFIGURATION	. 75
FIGURE 31: ELECTRICITY PRODUCTION AND LCOE WITH WATER AS HEAT TRANSFER FLUID	. 75
TABLE OF EQUATIONS	
EQUATION 1: DAILY RATE CALCULATION FORMULA	. 28
EQUATION 2: DRILL BIT COST CORRELATION, LOWRY ET AL. (2017)	. 43
EQUATION 3: DRILL BIT COST CORRELATION, PDC, DEEPU-2023	. 43
EQUATION 4: EFFECTIVE DRILLING TIME CALCULATION	. 46
EQUATION 5: LN MASS FLOW RATE DEPENDING ON DEPTH	. 47
EQUATION 6: LN MASS CONSUMPTION FOR WELL SECTION "X"	. 47
EQUATION 7: CALCULATION OF LN MASS CONSUMPTION FOR WELL SECTION "X", FROM ROP, STARTING DEPTH, ENDING	Ĵ
DEPTH	. 47
EQUATION 8: LEVELIZED COST OF ELECTRICITY OR HEAT FOR DIRECT USE CALCULATION FORMULA	. 76
TARLE OF TARLES	

TABLE OF TABLES

TABLE 1: CALCULATION OF AN AVERAGE PPI FOR THE YEAR INTERVAL 2008-2012	12
TABLE 2: DRILLING COST DEPENDING ON DEPTH – LUKAWSKI ET AL., 2014	12
TABLE 3: DRILLING COST DEPENDING ON DEPTH, SMALL DIAMETER – LOWRY ET AL., 2017	15
TABLE 4: DRILLING COST DEPENDING ON DEPTH, LARGE DIAMETER – LOWRY ET AL., 2017	15
TABLE 5: DRILLING COST DEPENDING ON DEPTH, NUMERICAL COMPARISON OF COST CORRELATIONS	16
TABLE 6: GENERAL ROCK CLASSIFICATION WITH EXAMPLES OF DIFFERENT ROCK TYPES	22
TABLE 7: UNIAXIAL COMPRESSIVE STRENGTH RANGES FOR TYPE OF ROCKS (VARIOUS SOURCES)	22
TABLE 8: ITEM CATEGORIZATION PARAMETERS	24
TABLE 9: DRILL STRING CONNECTOR DAILY RATE CALCULATION	30
TABLE 10: LASER SYSTEM DAILY RATE CALCULATION	30
TABLE 11: DRILL STRING DAILY RATE CALCULATION FOR THE DEEPU SYSTEM	32
TABLE 12: DRILL HEAD DAILY RATE CALCULATION – DEEPU SYSTEM	33
TABLE 13: LN SUPPLY SYSTEM MAIN PARAMETERS	38
TABLE 14: CRYOGENIC DRILLING FLUID MAIN PARAMETERS	38
TABLE 15: LN SUPPLY SYSTEM DAILY RATE CALCULATION	39
TABLE 16: SOLID CONTROL FLUID SYSTEM DAILY RATE CALCULATION	40
TABLE 17: DRILLING OPERATIONS ITEM SET (REPEATED FOR EACH WELL SECTION)	40
TABLE 18: CONSTANT PARAMETERS FOR LAB LASER TESTS	44
TABLE 19: VARIABLE PARAMETERS AND RESULTS FOR LAB LASER TESTS	45
TABLE 20: PROS & CONS OF DIFFERENT RIG TYPES	46
TABLE 21: PARAMETERS RELATING TO WELL DESIGN	59
TABLE 22: MAIN PARAMETERS AND RESULTS OF SIMULATIONS FROM D5.1	67
TABLE 23: MAIN PARAMETERS AND RESULTS OF THE SIMULATIONS FROM D5.1, WITH THE COSTS OF THE POWER AND	
DIRECT USE OF HEATING PLANTS AND ASSOCIATED $O\&M$ costs	72
TABLE 24: MAIN PARAMETERS AND RESULTS OF THE SIMULATIONS FROM D5.1, WITH THE THERMAL AND ELECTRIC POW	VER
PRODUCTION	72
TABLE 25: INPUT PARAMETERS FOR GEOPHIRE-X SIMULATIONS.	73
TABLE 26: RESULTS OF GEOPHIRE-X SIMULATIONS	74

DeepU drilling scalability and possible future on-site application

TABLE 27: MAIN PARAMETERS AND RESULTS OF THE SIMULATIONS FROM D5.1, WITH THE ELECTRIC ENERGY YEAR
PRODUCTION AND LCOE
TABLE 28: MAIN PARAMETERS AND RESULTS OF THE SIMULATIONS FROM D5.1, WITH THE HEAT ENERGY YEAR PRODUCTION
AND LCOH77

Deep U European Union (3.A. 101046937)

DELIVERABLE D5.2

DeepU drilling scalability and possible future on-site application

ABBREVIATIONS AND GLOSSARY OF ACRONYMS

Acronym	Extended definition
API	American Petroleum Institute
BHA	Bottom Hole Assembly
BOP	Blowout Preventer
Dhend,SCN"X"	Ending depth of section "X", [m]
Dhstrt,SCN"X"	Starting depth of section "X", [m]
DSP	Drillable Straddle Packer
DTRC	Dual-Tube Reverse Circulation
EGS	Enhanced Geothermal System
Eff_d_tscn"x"	Effective drilling time for section "X", [h]
GHI	Grit Hot-pressed Inserts
GTO	Geothermal Technologies Office
LCM	Lost Circulation Materials
LN	Liquid Nitrogen
L _{SCN"X"}	Length of section "X", [m]
LWD	Logging While Drilling
m	metres
MWD	Measurement While Drilling
M LN,SCN"X"	Liquid nitrogen mass consumption for section "X", [kg]
ṁLΝ	Liquid nitrogen mass flow rate, [kg/s]
MT	Milled tooth
NDT	Non-Destructive Test
ORC	Organic Rankine Cycle
PDC	Project Coordinator
PPI	Production Price Index
POOH	Pull-Out-Of-Hole
ROP	Rate Of Penetration, [m/h]
SoA	State of Art
SP	Spontaneous Potential
TCI	Tungsten Carbide Inserts
TIH	Trip-In-Hole
UCS	Uniaxial Compressive Strength
MT	Milled Tooth
WOB	Weight On Bit

DeepU drilling scalability and possible future on-site application

PUBLISHABLE SUMMARY

The DeepU project represents a groundbreaking advancement in geothermal energy, offering the opportunity to overcome some of the limitations of current mechanical drilling technologies. Conventional geothermal drilling is constrained by high operational costs, slow penetration rates, and geological challenges that restrict its replicability, its capability to reach very large depths economically. DeepU introduces an innovative approach that leverages high-power laser technology in combination with cryogenic gas injection. This revolutionary technique enables the creation of deep (>4 km) geothermal systems, offering a more efficient, cost-effective, and sustainable means of harnessing geothermal energy.

This deliverable provides an in-depth evaluation of the scalability of the DeepU drilling system, particularly its feasibility for large-scale, on-site deployment. The study focuses on key factors influencing drilling efficiency, including rate of penetration, energy consumption, cost structure, and environmental impact. Through rigorous computational simulations and comparative analyses with state-of-the-art (SoA) drilling methods, the report highlights the potential advantages of DeepU technology. These include significantly reduced well construction costs, enhanced precision, and the ability to operate effectively in diverse geological formations.

The findings suggest that DeepU's novel methodology has the potential to transform the geothermal energy sector by making it a more economically viable and a competitive alternative to fossil fuelbased energy sources. DeepU technology could accelerate the adoption of geothermal energy on a global scale by drastically reducing drilling costs and improving energy output. Additionally, its reduced environmental footprint aligns with international efforts to transition toward more sustainable energy solutions.

Future research and development efforts will focus on optimizing system components, improving operational efficiencies, and conducting real-world field demonstrations to validate performance. Industry partnerships, technological refinements, and continued innovation will be critical in driving the successful commercialization and adoption of DeepU drilling technology.