Deep*

DELIVERABLE D1.2

Report on the final design and material selection for the 3-forld drill string

Lead Beneficiary: Prevent Authors: A. Romanowski, J. Juffernbruch¹ Authors affiliations: Prevent¹ Date: 10/05/2024

Dissemination Level

PU	Public, fully open	
SEN	Sensitive - limited under the conditions of the Grant Agreement	Х
СІ	EU classified - RESTREINT-UE/EU-RESTRICTED, CONFIDENTIEL-UE/EU- CONFIDENTIAL, SECRET-UE/EU-SECRET under Decision 2015/444	

Report on various liquid and cryptogenic gases suitable for laser-beam drilling

This research is funded by the European Union (G.A. 101046937). The views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EISMEA. Neither the European Union nor the granting authority can be held responsible for them.

Document History

Version	Date	Authors	Description
1	10/05/2024	A. Romanowski	First draft
2	10/06/2024	O. Steinmeier, Fraunhofer IAPT	Review and comments
3	31/10/2024	A. Galgaro, University of Padova	Review and comments
4	06/11/2024	A. Romanowski	Final document
5	17/11/2024	L. Pockele	Final review by coordinator
6	01/12/2024	L. Pockele	Submission by coordinator

Disclaimer

This document is the property of the DeepU Consortium.

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the DeepU Coordinator with acceptance of the Project Consortium.

This publication was completed with the support of the European Innovation Council and SMEs Executive Agency (EISMEA) under the HORIZON-EIC-2021-PATHFINDEROPEN-01 programme.

This research is funded by the European Union (G.A. 101046937). However, the views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or EISMEA. Neither the European Union nor the granting authority can be held responsible for them.

TABLE OF CONTENTS

PUBLISHABLE SUMMARY	5
1. INTRODUCTION	6
2. 3-FOLD DRILL STRING - DESIGN, CLACULATION AND MODELLING	7
3. 3-FOLD DRILL STRING - MATERIAL SELECTION	13
4. LABORATORY DRILL STRING	17
5. CONCLUSIONS	18

LIST OF DRAWINGS

DRAWING 1: PRINCIPLE OF THE LASER DRILL STRING
DRAWING 2: CRYO-HOSE STRUCTURE AND A FLEXIBLE CRYO-HOSE
DRAWING 3: COUPLING SECTION WITH CORRUGATED CRYO-HOSES
DRAWING 4: CASINGS WITH CORRUGATED CRYO-HOSES
DRAWING 5: DRILL STRING WITH STRAIGHT RIGID CRYO-TUBES
DRAWING 6: DRILL STRING ASSEMBLY STEPS
DRAWING 7: DRILL STRING WITH STRAIGHT RIGID CRYO-TUBES AND LASER LENS SUPPORT10
DRAWING 8: COUPLING SECTION – MALE AND FEMALE SECTION – WITH CABLE CONNECTOR10
DRAWING 9: FINAL DRILL STRING WITH STRAIGHT RIGID CRYO-TUBES AND DATA CABLE11
DRAWING 10: TWO DIFFERENT CRYO-TUBES WITH DIFFERENT FREE CROSS SECTIONS12
DRAWING 11: DRILL STRING CONNECTION WITH BRONZE FILTER RING13
DRAWING 12: COMPARISON NITROGEN FLOW RATE OF CARBON FIBER AND STEEL TUBES15
DRAWING 13: CROSS SECTION OF CARBON FIBER DRILL STRING15
DRAWING 14: FOUR SINGLE CARBON FIBER PIPES16
DRAWING 15: FOUR CARBON FIBER PIPES AS A SET16
DRAWING 16: LASER DRILL STRING FOR LABORATORY USE17

LIST OF PICTURES

PICTURE 1: BRONZE FILTER RING	1	3

ABBREVIATIONS AND GLOSSARY OF ACRONYMS

Acronym	Extended definition
API	American Petroleum Institute
CA	Consortium Agreement
D	Deliverable
DCM	Dissemination and Communication Manager
D&C	Dissemination and Communication
EC	European Commission
EM	Exploitation Manager
EP	Exploitation Plan
GA	Grant Agreement
HE	Horizon Europe
IPR	Intellectual Property Rights
М	Month
PC	Project Coordinator
PDC	Polycrystalline diamond compact
PDEC	Plan for Dissemination and Exploitation including Communication activities
SC	Steering Committee
VRE	Virtual Research Environment
WP	Work Package

PUBLISHABLE SUMMARY

Prevent has led the development of an innovative drill string system designed to advance the efficiency and sustainability of deep drilling applications using a laser beam as energy source. The project focused on integrating cutting-edge materials and novel design concepts to enable the safe and stable transport of cryogenic fluids and the precise guidance of laser beams, addressing the unique challenges of this non-contact drilling technology.

The team explored multiple design iterations, overcoming issues such as thermal expansion, material compatibility, and operational efficiency amongst others in handling and connecting single drill string segments. The final design features a robust three-pipe system that ensures optimal thermal insulation, mechanical stability, tightness at high pressures and performance under extreme conditions at large depths. Laboratory tests and simulations validated the system's feasibility and reliability, forming a strong foundation for future steps in the development of the technology.

In addition, Prevent investigated lightweight, durable alternatives to traditional materials, particularly carbon fiber composites. These materials offer significant benefits, including reduced weight, enhanced corrosion resistance, and improved operational flexibility, presenting possibilities for future developments.

This deliverable represents a key milestone in Prevent's mission to innovate in the field of sustainable energy exploration.